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The XFEM in ALEGRA 1.

= ALEGRA: multiphysics Arbitrary Lagrangian-Eulerian
simulation software developed at Sandia

= The eXtended Finite Element Method for material interfaces:
= Enrichment of velocity field for each material

= Effectively an adaptive refinement technique: material interfaces are
resolved in multi-material elements, avoiding mixed-material models

= XFEM demands accurate interface reconstruction




Interface Reconstruction
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= Youngs’ Method for interface reconstruction (1982):
= Volume-of-fluid method: discretely mass conserving

= Only data available for reconstruction are the volume fractions

= |nterface normal computed from gradient of volume fraction
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= For more than two materials, an ordering is required

= ALEGRA has no infrastructure for tracking local (sub-element)
material centroids
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Pattern Interface Reconstruction

= Youngs’ method extended to allow intersecting and
terminating interfaces by selective gradient calculation
(Mosso & coworkers)

» |nterfaces cut from arbitrary polygons/polyhedra
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Mixed Element Tan/(Red+Blue) Red/Blue

= Second-order accurate with smoothing
= Enables XFEM in ALEGRA, but not exclusive to it
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The Ordering Problem

= A-B-Cor A-C-B? Accumulate volume fractions?
= Each interface is computed from an A | not A proposition

ny =—V»Vy ny =—VVy
ng = —V VA + VB ng = —V(VA + Vc)
= VVe = VVp

= For N materials, there are (N-2)N! ordering combinations

= Quickly becomes burdensome for users running complex problems

Manual Ordering Automatic Ordering

Specified by user No a priori input required

Global material ordering Local material ordering

Static Dynamic
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Ordering Algorithm

= Automatic ordering: Mosso & Clancy (1994), Benson (1998)
= Sijoy & Chaturvedi (2010) combined these for similar approach
= QOur method handles PIR interfaces, extended to 3-D

= Critical that ordering should be grid-independent
= Given interface should yield the same ordering regardless of frame

Blue Blue
Tan Tan
White White

= Requires perpendicular-distance least squares regression
= Use local material position approximation
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Algorithm (2-D)

1. Calculate local material centroid approximations
= Approximate materials as located at centroid of each neighbor

2. Fitaline to the centroids

=  Volume-fraction weighted least squares fit
=  Perpendicular distance regression for grid independence

3. Define ordering by distances along
line of projected material centroids

=  Choice of ordering direction: material
closest to the line determines direction

4. For certain cases, modify ordering

or gradient to improve interfaces
=  Choice of gradient approximation:

—VVi or =V (O_Vy)




Ordering ‘Fixes’ (1)
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= |dentify candidates by regression quality indicator
= Effectively a low-order smoothing: improving gradients

= QOrdering direction choice:

Largest volume material usually closest to the line, ordered first
Can be distorted by appearance of another material in neighborhood

Compute centroid of the complement of each candidate material and
compare distances from original regression line

White/(Tan)/Blue Vs. Blue/(Tan)/White




Sandia
m National
Laboratories

Ordering ‘Fixes’ (2)

= PIR allows for intersecting interfaces: T-intersections
= Angle of intersection depends on gradient calculation choice

= Gradient choice at T-intersections:
= Usually accumulation is best for the second material (e.g., layers)

= Terminating interface may be ‘better’ without accumulation:
when T-intersection is identified, compute both interfaces

= Choose the interface that better suits the neighborhood

Blue/Blue+Tan VS. Blue/Tan
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Demonstration Problem

= Low-resolution block impacting a wall, Eulerian XFEM
= Manual ordering gives ‘reference’ solution [not converged]

Automatic Ordering Manual Ordering
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A Contrived Example

= Nested spheres striking a plate
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Another Example

= Plate impact at 800 m/s
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Extension to 3-D

= Need an ordering direction: start by fitting a basis

= Error equation:
normal of the plane

= Residual equation:

tangential direction

= Extreme points n
coincide to define ‘
the basis directions
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Algorithm (3-D)

1. Calculate local material centroid approximations
2. Fit a basis to the centroids

=  Newton method for initial solution, then complete the basis

=  Fail-safe sequence to ensure a solution is found

3. lIdentify tangential direction (ordering line)

4. Define ordering by distances along line
of projected material centroids

=  Same logic as 2-D, based on distance /
projected on the intersection plane

5. Check for ordering overrides (as in 2-D)
=  Switch ordering if necessary b
=  Check gradients at T-intersections
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3-D Demonstrations
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= \erification tests




Sandia
National
Laboratories

3-D Examples

= Whipple shield: sphere impacting plate in air

Auto Manual

= An enabling feature for 3-D Eulerian XFEM in ALEGRA
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3-D Examples

= Plate impact at 750 m/s (3-D Eulerian, without XFEM)

(Model courtesy of Scott Roberts)




